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LETTER TO THE EDITOR 

A class of null solutions to Yang-Mills equations 

Andrzej Trautman 
Institute of Theoretical Physics, Warsaw University, Hoza 69, 00-681 Warsaw, Poland 

Received 31 August 1979 

Abstract. A class of null solutions of Maxwell’s equations is generalised to Yang-Mills 
theory. The plane-fronted, non-Abelian waves, recently found by Coleman, are among the 
null solutions. 

Consider a plane electromagnetic wave, propagating in the z direction in Minkowski 
space. Its electric and magnetic fields are 

E = ae, +be,, ,  B = ae, - bex, (1) 

where a and b are arbitrary functions of u = t - z ,  e, = grad x and ey = grad y. This field 
may be derived from a potential (A,) ,  CL = 1, 2 ,3 ,4 ,  which will be represented by the 
l-form A = A, dx,. A possible choice is 

A = (ax +by + c )  du ( 2 )  
where c is another function of U. Indeed, the electromagnetic field is given by the 
2-form 

F = ( a  d x + b  dy)r\du. (3) 

Clearly, the function c occurring in (2) may be eliminated by a gauge transformation 
without affecting either a or b. 

The potential (2) is suitable for a generalisation to non-Abelian gauge fields, 
including gravitation, and to a class of null ‘spherical’ waves. 

Consider the line element 

2du(dv + H  du)-P2(dx2+dy2) (4) 

on a four-dimensional manifold M, referred to coordinates x, y, U and U. It includes 
Minkowski space in various ways, i.e. in different coordinate systems. In particular, if 

P = l  H=O u = t - z  v = i ( t + z )  (5a)  

dt2 - dX2 - dy2 - dz2. (56) 

u = r  ( 6 a )  

then the line element reduces to 

Similarly, if 
P = v [ l  +$(x2 + y2)]-’ H = i  u = t - r  

x + i y  = 2eiq cot IS 
then the line element is 

dr2 - dr2 - r2(da2 + sin2 4 dq2) .  
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The line element (4), considered by Ivor Robinson as early as 1956, also includes the 
Schwarzschild solution (H  = t -  m/r, other identifications as in (6a)), plane gravita- 
tional waves, and many other solutions of Einstein’s equations (Robinson and Traut- 
man 1962). 

Let A be the potential of a gauge configuration in a theory of the Yang-Mills type, 
based on a Lie group G. The potential is a 1 -form on M,  with values in g, the Lie algebra 
of G. The gauge field corresponding to A is 

F = dA +$[A,  A ]  

where the bracket denotes both the Lie algebra product and the exterior (wedge) 
product of forms. Introducing the Hodge (dual) operator * one can write source-free 
Yang-Mills equations as 

D * F =  d * F + [ A , * F ] = O .  
def 

Assuming the metric on M to be of the form (4) and orientation to be given by the 
coframe 8, 

8 ’ = P d x  0 2 = P d y  O 3  = du = dv + H du, (8) 
the duals of 2-forms may be evaluated from 

* (du A dx) = du A dy * (du A dy) = -du A dx etc. 

Let the potential be 

A = a(x ,  y ,  U )  du 

where a is a g-valued function of the variables indicated. The bracket [A,  A ]  vanishes 
because du A du = 0. Therefore 

F = (a,  dx +ay dy) A du 

and 
* F = ( a ,  dy-a ,  dx)Adu 

where subscripts x and y denote partial derivatives with respect to the variables 
indicated. 

Since [A,  * F ]  = 0, the Yang-Mills equation (7) reduces to 

a,, + ayy  = 0 

so that the general solution is cy = Re M (x + iy,  U ) ,  where w is an arbitrary g-valued 
function of U ,  analytic in x + iy. 

In the coordinate system ( 5 ) ,  the solution 

a = a ( u ) x + b ( u ) y f c ( u )  

is a ‘non-Abelian plane wave’ (Coleman 1977). But is it really plane, i.e. invariant 
under translations in the x and y directions? By looking at the field, given by formula 
(3), one is tempted to give an affirmative answer to this question. It should be 
remembered, however, that in a non-Abelian gauge theory, F does not provide a 
complete description of the gauge configuration. 

A transformation (diffeomorphism) f of M is a symmetry of a gauge configuration if 
the transformed (pulled-back) potential f * A  differs from A only by a change of gauge, 
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i.e. if there is a G-valued function g on M such that 

f*A = g - ’ A g  3- g-’ dg. (9) 

-&.A = D77, (10) 

An infinitesimal version of the condition of invariance, 

is obtained from (9) by considering the one-parameter groups (fr), ( g r ) ,  t E R, where ( f r )  
is generated by a vector field 5 on M and gr = exp tq with v : M + g  (Bergmann and 
Flaherty 1978, Trautman 1979). Differentiation of both sides of equation (10) leads to 

2.P = [ E  771 (1 1) 

where, as in ( lo) ,  ,ie, is the Lie derivative with respect to 5. 
If 5 is a generator of a translation in the (x, y )  plane, say 6 = a/ax, then equation (11) 

may be satisfied for a field of the form (3), but equation ( lo) ,  in general, cannot. Indeed, 
let G = S0(3), so that g is isomorphic to R3 and the Lie bracket corresponds to the 
vector product. Equation (11) implies 

[a, 771 = 0 = [b, 771 

a du = dq + [ c ,  771 du. 

(12) 

and equation (9) reduces to 

(13) 

If [a, b ]  # 0, then conditions (12) imply 77 = 0, in contradiction to (13). Moreover, the 
function c cannot be changed by a gauge transformation without affecting a and b. 
Therefore, in an SO(3) theory, two potentials of the form (2), with different functions c, 
and the same, but non-commuting a and b, are gauge-inequivalent. 

If the values of a, b and c belong to an Abelian Lie subalgebra 6 of g, then c can be 
reduced to 0 without changing either a or b ;  in this case translations in the (x, y )  plane 
are symmetries. 

Plane-fronted gravitational waves may be described by the line element (4) with 
P = 1 and a linear connection of the form 

w = a d u  (14) 
when referred to the frame (8); a is now a gI(4, R)-valued function of x, y and U, 
a = (a’”,). The connection is metric if and only if 

a,, +a,, = 0. 

It is moreover torsionless if the only non-vanishing elements of the matrix (a,,) are 

a31 =-a13=HX a 3 2  = - a 2 3  = H,. 

In other words, the conditions of symmetry and metric compatibility, imposed on the 
connection l-form (14), imply that the values of a belong to the Abelian, two- 
dimensional Lie algebra 6 of the group of null Lorentz transformations which leave 
invariant the null vector a/& (see, for example, Ehlers et a1 1966). 

The only essential components of the curvature two-form 

Slnll,=dwF,+wwp A W ’ ,  

are 
5231 = (Hxx dx + H x y  dy) A du 

s23 ,  = (Hxy dx + Hyy  dy) A du. 
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The Einstein equation for empty space 

orp A nu,] 0 

reduces to 

H x x  +Hyy = 0, 

D*SZ,,=O 

whereas the Kilmister-Yang equation (Kilmister 1962, Yang 1974) 

is equivalent to the weaker condition 

Hxx + H y y  = arbitrary function of U. 

Both of these field equations admit plane waves as solutions. A pure gravitational 
plane-wave solution of Einstein's equations is given by (Bonnor 1956, Peres 1959) 

H = Re { w ( u ) ( x  +iy)2}. 

The corresponding metric is plane because it admits a group of isometries transitive on 
the null hyperplanes U =constant (Bondi et al 1959, Ehlers and Kundt 1962). 

This Letter was written during the Workshop on Solitons held in July 1979 at the 
International Centre for Theoretical Physics in Trieste. I gratefully acknowledge 
financial support from the Norman Foundation which made possible my stay at the 
Centre. 
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